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1. Introduction

Cycle structures represent a steady state in a sea of chaos. My research focuses on
iterating objects and asking about the cycle structures that form. Much of modern
dynamics is based on foundational work by Julia and Fatou exploring discrete
dynamical systems in [3, 4, 5, 12] . The field saw a resurgence of interest in the
1970s with the advent of computing technology. Since dynamical systems change
over time with the next state depending on the current state, computing changed
which examples are possible to generate that led us to new questions we can ask.
The Mandelbrot set, iterations of the polynomial z2 + c starting at 0, is one such
example that can be visualized and generated today. This set remains a source of
research questions for those working in complex dynamics.

My field, arithmetic dynamics, is a relatively new and active field that also has
emerged and grown because of computing power. Arithmetic dynamics is a subfield
of number theory. In this field, known theorems in number theory are translated
into an arithmetic dynamics setting. The advantage of this framing is that moving
from elliptic curves, which have a lot of structure, to rational maps which have
very little structure can give us a way to tackle a big topic in number theory;
understanding the structure of the absolute Galois group GalQ/Q. Rational maps
have less structure than elliptic curves, but do have a lot of tools available that
makes problems approachable in this setting. Table 1 illustrates how to reframe a
number theory question as an arithmetic dynamic question by replacing a number
theory object with an arithmetic dynamics object. In Table 1 we do not know what
the equivalent object to CM elliptic curves should be. My research is exploring
possible objects that may be equivalent.

My research has primarily focused on four areas in which I use fundamental
tools in elementary number theory, arithmetic dynamics, and Galois theory to
prove results and provide evidence for conjectures and problems in my field. I will
describe some research areas in more detail below: the study of families of twists
of dynamical systems and uniform bounds on the number of rational preperiodic
points for these families (Section 3); the study of dynamics over finite fields and
proportions of strictly periodic points (Section 4); and my current research in the
study of arboreal Galois representations that arise when looking at the backwards
orbit of a point over finite fields (Section 5). The techniques used in Section 5
will lead to future results in Section 4 which is what encouraged me to branch into
arboreal Galois trees. These skills have helped me to design undergraduate research
projects that are interesting and accessible as described in Sections 6.1 and 6.2.
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Table 1. This table illustrates how to reframe a number theory
question as an arithmetic dynamic question by replacing a number
theory object with an arithmetic dynamics object.

Number theory object ↔ Dynamical object
Elliptic curves ↔ Rational maps
Torsion points ↔ Periodic points
CM elliptic curves ↔ WE DON’T KNOW WHAT GOES HERE
Z or Q subgroups ↔ Forward or backwards orbits

2. Preliminaries

Arithmetic dynamics concerns itself with a set S and self mapping function
φ : S → S. This allows for iteration

φn = φ ◦ φ ◦ ... ◦ φ.︸ ︷︷ ︸
n terms

One goal of arithmetic dynamics is to classify a point α according to its behavior
in the orbit defined to be {φn(α) : n ≥ 0}. Often our questions stem from results in
number theory restated in an arithmetic dynamics setting, such as problems from
work by Serre in number theory on non CM elliptic curves in [24].

For the remainder, we take φ to be a morphism and S = PN (K) where K is

a field and PN is projective N . In the case of N = 1, we may write φ = f
g ,

a rational map where f and g have no common zeros. The degree of φ is d =
max{deg(f),deg(g)} > 1.

We define α ∈ PN (K) to be periodic if φn(α) = α for some n ≥ 1, the smallest
such n is called the exact period of α. The point α is preperiodic if some iterate
φm(α) is periodic. If α is not preperiodic, then we call α a wandering point.

Another important concept is critical points or ramification points. The point
α ∈ PN (K) is a critical point for φ if the induced map on the tangent space Tα is 0.
For N = 1, α <∞, and φ(α) <∞, this is just the usual definition that φ′(α) = 0.
In order to compute the derivative at the excluded points, we make a linear change
of variables. We define the critical orbit of α to be {fn(α) : n ≥ 1}. A guiding
principle in complex dynamics is that the orbits of critical points are closely tied
to the behavior of the dynamical system.

3. Twists

In this section K is a number field. We concern ourselves with morphisms

φ : PN −→ PN

[x0 : x1 : ... : xN ] 7→ [f0(x) : f1(x) : ... : fN (x)]

where x is the N + 1-tuple [x0 : x1 : ... : xN ].

Definition 3.1. We define

HomN
d (K) = {φ : PN (K)→ PN (K) : φ is a morphism of degree d}.

That is, φ is defined in each coordinate by homogeneous polynomials of degree d
with coefficients in K. (We follow the convention that HomN

d refers to HomN
d (K),

and similarly for PGLN+1, where PGLN+1(K) is the projective linear group over
field K = Aut(PN ).)
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Definition 3.2. Let φ, ψ ∈ HomN
d (K). We say the morphisms are conjugate if

there is some f ∈ PGLN+1

(
K
)

such that φf = ψ. They are conjugate over K if

there is some f ∈ PGLN+1(K) such that φf = ψ.

Definition 3.3. For a map φ ∈ HomN
d (K),

Twist(φ/K) =

{
K-equivalence classes of maps ψ ∈ HomN

d (K)
such that ψ is K-equivalent to φ

}
.

An element ψ ∈ Twist(φ/K) is called a twist of φ.

Example 3.4. Let

φ(z) = z − 2

z
and ψ(z) = z − 1

z
.

Also let f(z) = z
√

2. One may check that φf (z) = ψ(z). So ψ is a (quadratic)
twist of φ. Solving φ2(z) = z gives the Q-rational two-cycle {±1}. But ψ does not

have rational points of exact period 2; solving ψ2(z) = z gives {±1/
√

2}.

We denote PrePer
(
φ,PN (K)

)
= {P ∈ PN (K) : P is preperiodic under φ}. Mor-

ton and Silverman proposed the following conjecture in 1994:

Conjecture 1. Let K/Q be a number field of degree D, and let φ : PN → PN be a
morphism of degree d ≥ 2 defined over K. There is a constant κ(D,N, d) such that

# PrePer(φ,PN (K)) ≤ κ(D,N, d).

This implies uniform boundedness for torsion points on abelian varieties over
number fields (see [2]). In the special case N = 1 and d = 4, the conjecture implies
Merel’s uniform boundedness of torsion points on elliptic curves [17]. Much work
has been done on this problem, but only non-uniform bounds are known to date.

We can consider interesting families of dynamical systems, like fc = z2 + c, and
see if Conjecture 1 will hold. In fact, Poonen conjectures in [23] that there is a
precise bound over Q for this one parameter family:

Conjecture 2. If z0, c ∈ Q such that z0 has exact period n for fc(z) = z2 + c, then
n ≤ 3.

Here the exact period n is bounded, whereas the Morton-Silverman conjecture
bounds κ, the number of K-rational preperiodic points. Poonen shos that if the
conjecture holds, then κ = 9 for quadratic polynomials. Even this refinement of
the Morton-Silverman conjecture remains open. Morton [18] has shown that n 6= 4.
Flynn, Poonen, Schaefer [6] showed that n 6= 5. And Stoll [27] proved that the Birch
and Swinnerton-Dyer Conjecture implies n 6= 6. Given the difficulty of the question
for quadratic polynomials, my Theorem 3.5 [14] regarding a different one-parameter
family of quadratic functions appears surprisingly strong.

Theorem 3.5. [Theorem 4.1 from [14]] The rational map φb(z) = z2+b
z where

b ∈ Q has no rational points with exact period n ≥ 5.

Using this theorem and prior results from Manes [15], I can describe all possible
rational preperiodic structures for the family φb. See Figure 1.

It turns out that these two one-parameter families are different in a dynamically
significant way. The quadratic functions φb considered above are all quadratic twists

of the function φ(z) = z2+1
z . This is not the case for the quadratic polynomials fc

considered by Poonen and others.
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Figure 1. All possible rational preperiodic graphs for φb(z) = z2+b
z .

Inspired by my proof of Theorem 3.5, Levy, Manes, and I sought a generalization
to families of twists of dynamical systems in arbitrary degree and arbitrary dimen-
sion, more akin to the Morton-Silverman conjecture 1. We were able to prove the
following:

Theorem 3.6. [Theorem 2.9 from [14]] Let K be a number field and let φ ∈
HomN

d (K). Then there is a uniform bound Bφ such that for all ψ ∈ Twist(φ/K),

# PrePer(ψ,PN (K)) ≤ Bφ.

We bounded the degree of the field extension needed to twist from φ to ψ. Then
we were able to apply Northcott property to conclude the number of K-rational
preperiodic points for twists of φ is bounded. The techniques used in the proof are
similar to those used by Silverman in his result for abelian varieties in [25].

4. Finite Field Statistics

When iterating a polynomial function φ over a finite field, the orbit of any point
α ∈ Fpn is a finite set. That is, all points are preperiodic, meaning the orbit
eventually enters a cycle. Many natural questions about the structure of orbits
over finite fields remain. Manes and I focus on the following question:

Question 1. Fix a polynomial: How does the proportion of periodic points in Fpn
vary as n→∞?

Manes and I answer the question in the special case that the polynomial map
φ(z) can be viewed as an endomorphism of an underlying algebraic group. This
restriction makes the structure of the periodic points particularly straight forward
and is therefore a natural place to begin a more complete investigation of the ques-
tion. We fix the notation Per

(
φ,PN (K)

)
= {P ∈ PN (K) : P is periodic under φ}.

The näıve limit

lim
n→∞

# Per (φ,Fpn)

pn

does not exist in general because the map φ acts as a permutation polynomial
whenever n is relatively prime to the multiplicative order of p modulo the degree
of φ. However, we are able to find limiting proportions along towers of finite fields
Fpn with suitable divisibility conditions on n. We have the following two results for
q an odd prime and similar results hold in the case q = 2 and for maps of composite
degree:

Theorem (Theorems 4.5 and 5.7 in [16]). Fix a prime p and let q be a different odd
prime. Define δ to be the multiplicative order of p modulo q and µ = vq(p

δ−1) ≥ 1.
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Figure 2. The infinitely rooted 2-ary tree representing the back-
wards orbit of α = −3 for the function φ(z) = z2 + 3 over F7.
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Let f(z) = zq, and let Tq(z) be the qth Chebyshev polynomial. Then we have the
following for any integer ν ≥ 0:

lim
n→∞
δ|n

vq(n)=ν

# Per (φ,Fpn)

pn
=

1

qµ+ν
, and

lim
n→∞
δ|2n

vq(n)=ν

# Per (Tq,Fpn)

pn
=
qµ+ν + 1

2qµ+ν
.

where vq(n) is the q-adic valuation of n, that is n = qνd, with q - d.

The proofs take advantage of the fact that Chebyshev maps and power maps
have a unique function in each degree, which we can write and iterate explicitly.
Combining that explicit form with the defining equation for points in Fpn leads to
our result.

This paper is accessible to an undergraduate with a background in a topics in
number theory course or abstract algebra and I am leading students on extending
these results in Project 1 described in subsection 6.1.

5. Current research on finite fields and backwards orbits

Of more recent interest, like in [1, 8, 11, 13], is the backwards orbit of a point:

{φ−n(α) : n ≥ 0}.
We can visualize backward orbits of α under successive iterates of φ with an

infinite rooted d-ary tree, T∞. The set of vertices of this tree are⊔
n≥0

φ−n(α) ⊆ P1(Ksep)

whose edges are given by the action of φ (we take φ0(α) = α), see Figure 5. The
absolute Galois group Gal(Ksep/K) acts on T∞(α), which we can think of as the
arboreal Galois representations [1]. Their study dates back to work of R. W. K.
Odoni in the 1980s [19, 20, 21].

A motivating problem of arboreal Galois representations of f is:
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Problem 1. For any field K, for which rational functions φ ∈ K(x) do we have
a finite index for [Aut(T∞) : G∞(φ, α)]? Here Aut(T∞) is the collection of automor-
phisms on the infinite rooted d-ary tree T∞ andG∞(φ, α) = lim←−Gal(K(f−n(α))/K).

Jones discusses in [10] the cases for which we can answer Problem 1. Such
problems stem from work by Serre in number theory on non CM elliptic curves [24]
as well as the goal of understanding the structure of the absolute Galois group
GalQ/Q.

I am focused on answering the following question:

Question 2. Fix a quadratic polynomial over Fp: Consider the infinitely rooted
binary tree T∞ created when looking at the backwards orbit of α, where α is not
periodic or in the critical orbit. Does there exist a sequence of nodes t0, t1, ... in
the tree such that f(tn) = f(tn−1) and Fp(tn)/Fp(tn−1) is nontrivial for all n?

Question 2 is motivated by Problem 1. Most results about arboreal Galois groups
rely on finding primes that ramify and getting enough ramification to show that
the Galois group of the tree has to grow [10]. Our idea is to show that the residue
field has to grow at each level. If we could prove this for most primes then we could
say something meaningful about G∞(φ) over a global field.

Jones and Boston discussed in [11] a condition we can check to determine if a
map will have infinitely many Galois extensions in a row:

Theorem 5.1 (Proposition 2.3 [11]). Let K be a finite field with characteristic not
equal to 2 and φ ∈ K[x] with critical point γ. Then all iterates of φ are irreducible
if and only if its adjusted critical orbit,

{−φ(γ)} ∪ {φi(γ) : i = 2, 3, . . .},

contains no squares.

When restricted to Fp with p > 2 we can translate this theorem to mean the
following.

Theorem 5.2. Fix φ and suppose its critical orbit has length m. Then a function
φ will have infinitely many nontrivial extensions in a row if it has m nontrivial
extensions in a row.

Benedetto, Juul, and I use Theorem 5.2 were able to answer part of Question 2
for some polynomials of the form φ(z) = z2 + c over Fp. We have shown

Theorem 5.3 (Benedetto, Juul, T.). For φ = z2 + c with a critical orbit {0, c},
{0}, or {0, c, φ(c)} where φ(c) is fixed there exist a sequence of nodes t0, t1, ... in
this tree such that f(tn) = f(tn−1) and Fp(tn)/Fp(tn−1) is nontrivial for all n.

6. Future Projects

I have several ideas for future work, including some collaborations underway.
An undergraduate project about pursuing a natural extension of Manes and my
results from Section 4 as well as going in a different direction with finite field
statistics (Subsection 6.1 and Subsection 6.2). Through collaborations started at
several workshops including ICERM and AIM, Benedetto, Juul, and I are working
to extend our current results from Section 5 (Subsection 6.3)
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6.1. Project 1: Undergraduate Project on Finite Field Statistics. Cheby-
shev polynomials arise by restricting the power map zn to the quotient of P1 by
the finite group of automorphisms {z, z−1}. Similarly, quotients of elliptic curves
lead to rational maps called Lattès maps. A natural next step in studying the
proportions of periodic points in finite fields would be to consider the Lattès maps.

Definition 6.1. A rational map φ : P1 → P1 of degree d ≥ 2 is called a Lattès
map if there is an elliptic curve E, a morphism ψ : E → E, and a finite separable
covering π : E → P1 such that the following diagram is commutative:

E
ψ−−−−→ E

π
y y π
P1 φ−−−−→ P1

Example 6.2 (In [26]). Let E : y2 = x3 + ax + b be an elliptic curve. The the
classical formula for x(2P ) and the isomorphism x : E/{±1} → P1 yield the Lattès
map

φ(x) = x(2P ) =
x4 − 2ax2 − 8bx+ a2

4x3 + 4ax+ 4b
.

Here ψ is the duplication map ψ(P ) = [2]P, and the projection map π is given by
π(P ) = π(x, y) = x.

These maps have an underlying algebraic group structure, like the power maps
and Chebyshev polynomials. In the case of Lattès maps, the group structure is
that of elliptic curves.

Examples computed in SAGE suggest I can find the limit of strictly periodic
points on Lattès maps that arise from supersingular elliptic curves. I would work
with undergraduates to answer Question 1 for Lattés maps. They would need a
background in algebra and elementary number theory and would use the programs
I made in Sage as well as read [16] to solve the Lattès problem.

Power maps and Chebyshev polynomials have a function in each degree; Lattès
maps do not share this property. This makes working with them more difficult. In
order to study the behavior of their periodic points in a finite field we would not
be able to use prior techniques from the power map and Chebyshev case. Since it
has this added complexity, learning the proportion of periodic points would be a
more interesting result. It may give insight to further cases that do not have an
underlying group structure.

6.2. Project 2: More Finite Field statistics. Instead of asking Questions 1 we
can ask:

Question 3. Fix a polynomial: How does the proportion of periodic points in Fp
vary as p→∞?

Question 3 has been explored in [13] and [9]. Using techniques introduced by
Odoni, they have shown you can use arboreal Galois trees to find proportions
of periodic points. It is possible such techniques will extend to Question 1 for
φ without an underlying group structure. I have been working with Juul and
Benedetto to better understand the arboreal Galois techniques. We will then use
these to answer Question 1 for more families of polynomials.Adding to these tools,
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Pink in [22] gave a description of the potential Galois group actions on T∞ at each
level of the tree. Using his descriptions we can calculate the proportion of periodic
points of z2 − 1 as p→∞, the last degree 2 case unanswered. I would gain insight
on how to answer Question 3 for higher degree polynomials that were not covered
by [9] and [13] as this proof would not rely on the ramification of primes as their
results do.

6.3. Project 3: Arboreal Galois Trees. Expanding on work with Jones in [11],
Boston, Goskel, and Xia found that when using a Markov chain process to build
backwards orbit maps of different polynomials over finite fields that certain tree
structures never appeared [7]. Benedetto, Juul, and my work suggests that those
same tree structures that did not appear in Boston’s work should not appear. We
would formalize the reasoning using ideas developed at the AIM workshop Galois
Theory of Orbits this past May. With this reasoning we would be able to expand
Theorem 5.3 to more general critical orbits.
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Nr., pages 107–136. Presses Univ. Franche-Comté, Besançon, 2013.
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