
Lecture 14–Oct 23; Sequences

Learning Goals

• Be able to prove that [a, b] ⊂ R is connected.

• Define sequences and what it means for a sequence to converge.

• Wrestle with the definition to understand the importance of each quantifier in the definition.

• State and prove some properties of convergent sequences.

Recall:
We say E is connected if E is not the union of two nonempty separated sets. we call A and

B separated if both A ∩B and A ∩B are empty.

Theorem 0.1. [a, b] is connected. (R euclidean).

Proof. If not then there exists a separation of [a, b] = A ∪B. WLOG say b ∈ B.
Let s = supA (which exists since we are in R) then either s ∈ A or s is a limit point of A

because we know s − ε is not an upper bound so there exists a ∈ A such that s − ε < a ≤ s. So
s ∈ A.

Since A and B are separated sets
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1 Sequences in Metric spaces
We are now in Rudin Chapter 3.

Example 1.1. • Let X = C(R) := continuous bounded functions from R to R. Let the metric
be d(f, g) = supx∈R |f(x)− g(x)|.
Consider

Do these converge to some f?

• Convergent sequences examples

• Let Q have the p-adic metric. d(x, y) = |x− y|p = p−α where x− y = pαb with p - b.
Consider Q with 5-adic metric. Look at the sequence { 1

5n }.
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Recall

Definition 1.2. A sequence {pn} in metric space X is a function f : N→ X mapping n 7→ pn,
a point in X.

Definition 1.3. The range of {pn} is the set {x : x = pn for some n}.
A sequence is bounded if its range is bounded.

Example 1.4. The sequence p, p, p... has range

Definition 1.5. A sequence {pn}n∈N converges if there exists a p ∈ X such that for all ε > 0 there
exists N ∈ Z+ such that n ≥ N implied d(p, pn) < ε.

We write pn 7→ p or limn 7→∞ pn = p.
We say ‘pn converges to p’ or ‘p is the limit of {pn}.′

To show pn converges to p we must for each ε > 0 find an N that makes pn and p close together.
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Activity 1 today: Below you will find several statements involving a sequence {an} of real numbers
and a real number L> In each case, consider the statement as an “alternative” to the definition
{pn} 7→ L. Provide an example of a sequence of real numbers and a number L that satisfies the
“definition” and yet does no converge to L. Accompany your example with a verbal explanation of
the inadequacies of the definition. Be prepared to talk about your example with the class.

1. The sequence {an} converges to L if for all ε > 0 there exists an n ∈ N such that d(an, L) < ε.

2. The sequence {an} converges to L if for all ε > 0 there exists an N ∈ N such that for some
n > N, d(an, L) < ε.

3. The sequence {an} converges to L if for all N ∈ N there exists ε > 0 so that for all n > N,
d(an, L) < ε.

4. The sequence {an} converges to L if for all N ∈ N and for all ε > 0 there exists an n > N
such that d(an, L) < ε.1

1This exercise is taken from Closer and Closer: Introducing Real Analysis by Carol S. Shumacher, Copyright
Jones and Bartlett Publisher, 2008.
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Activity 2: Determine if the following statements are true or false.

1. pn 7→ p and pn 7→ p′ then p = p′.

2. {pn} bounded then pn converges.

3. pn converges then pn is bounded.

4. limn 7→∞ pn = p then p is a limit point of range of {pn}

5. p is a limit point of E ⊂ X then there exists a sequence {pn} in E such that pn 7→ p.

6. pn 7→ p if and only if every neighborhood of p contains all but finitely many pn.
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Extra scratch page;
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My justifications for 1-6 in Activity 2.

1. Suppose pn converges to p and pn converges to p′. Then because pn converges to p for all
ε > 0 there exists and N such that for all n ≥ N d(pn, p) < ε/2. Similarly so there exists
an N ′ such that for all n ≥ N ′ d(pn, p

′) < ε/2. Choose ε = d(p, p′) and let n ≥ max{N,N ′}
then

ε = d(p, p′) ≤ d(p′, pn) + d(p, pn) < ε.

This implies that d(p, p′) = 0, done.

2. Sequence of 0, 1 is bounded but does not converge.

3. Let ε = 1. Since pn converges to p there exists an N such that n ≥ N implies d(pn, p) < 1.
Let R = max{1, d(p1, p), ..., d(pN−1, p)}.
So all points are in B(p,R+ 1). Hence they are bounded.

4. Let pn = p.

5. Idea; For all n ∈ N choose pn ∈ B(p, 1/n). This point exists by definition of a limit point.
We want to show pn converges to p. Given ε > 0 let N = d 1ε e.
Check that n ≥ d 1ε e implies 1

n ≤ ε. So d(pn, p) <
1
n ≤ ε, as desired.

6. backwards direction; for all ε > 0 the neighborhood B(p, ε) contains all but pi1 , pi2 , ...pir for
i1 < ... < ir.

Then n ≥ iN+1 implies d(pn, p) < ε.

Forward direction. Proof by picture. Look at a sequence of pn converging to p. We can use
an argument similar to 3. to show every neighborhood contains all but finitely many pn.
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