

Lecture 16–Oct 30; Cauchy sequences and Completion

Learning Goals

- State and use equivalent definitions to being Cauchy.
- Know definition of diameter and be able to use it in a proof.
- Be able to define completion and know how to complete a metric space.
- Be able to use the definition of Cauchy to prove compact metric spaces are complete.

HW 8 due Friday, note problem 7 needs material from Wednesday to do. Exam next week; it will cover HW 1-8, with an emphasis on the new material.

1 Cauchy Sequence continued

Recall:

Definition 1.1. A sequence $\{p_n\}$ is Cauchy if for all $\epsilon > 0$ there exists an N such that for all $m, n \geq N$ then $d(p_n, p_m) < \epsilon$.

“Past index N points get close to each other.”

Definition 1.2. Let E be a nonempty subset of a metric space X and let S be the set of all real numbers of the form $d(p, q)$ with $p \in E$ and $q \in E$. The sup of S is the **diameter** of E . We denote this as $\text{diam } E$.

Remark 1.3. If $\{p_n\}$ is a sequence in X and E_N consists of the points p_N, p_{N+1}, \dots then $\{p_n\}$ is Cauchy iff

$$\lim_{N \rightarrow \infty} \text{diam } E_N = 0.$$

Theorem 1.4. 1. If \bar{E} is the closure of $E \subset X$, where X is a metric space, then $\text{diam } \bar{E} = \text{diam } E$.

2. If K_n is a sequence of compact sets in X such that $K_n \supset K_{n+1} \supset \dots$ and if $\lim_{n \rightarrow \infty} \text{diam } K_n = 0$ then

$$K := \bigcap_{n=1}^{\infty} K_n$$

consists of exactly one point.

Proof. IDEA

Of a:

Of b: We know that the intersection is non empty by generalizing our nested intervals theorem.

□

2 Complete Metric spaces

Recall:

Not every Cauchy sequence converges. But it is true for complete metric spaces.

Definition 2.1. A metric space X is complete if every Cauchy sequence in X converges to a point of X .

Question: What spaces are complete? Guesses?

Theorem 2.2. *Compact metric spaces are complete.*

Proof. Let $\{x_i\}$ be Cauchy in X .

□

Theorem 2.3. *Closed subset E of complete metric space is complete.*

Proof. IDEA Satrt with a Cauchy sequence $\{x_i\} \in E$.

□

Theorem 2.4. \mathbb{R}^k is complete.

Proof. IDEA

□

Example 2.5. in \mathbb{R} . Does $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ converge?

Example 2.6. \mathbb{Q} is not Cauchy (we showed this last time.) But, \mathbb{Q} can be extended to \mathbb{R} .

Theorem 2.7. Every metric space (X, d) has a completion (X^*, Δ) where x^* extends X and Δ extends d .

How does it do this, you ask. Given X , let

$$X^* = \{ \underline{\hspace{10cm}} \}$$

Continued on the next page.

For P and $Q \in X^*$ let

$$\Delta(P, Q) = \text{_____}$$

Then X is ‘isometrically’ (there exists a bijection with a subset of X^* that preserves distances) embedded into X^* via

and X is complete.

Example 2.8. 1. \mathbb{Q} may be completed with respect to the Euclidean metric, and when we do this we get \mathbb{R} .

2. You can also complete \mathbb{Q} with respect to the p -adic metric.

This creates \mathbb{Q}_p , the **p -adic rationals**.