
Lecture 18–Nov 6; Series test!

Learning Goals

• Be able to state prove tests such as Cauchy criterion, Comparison test, geometic series, and
the term test.

• Recognize when a series test is inappicable.

• Use some series tests to prove convergence or divergence.

• Prove e is irrational.

There is more on series than we will cover. Please see Rudin pg 72-75 for more about operations
with series.

Exam is available on Sakai. Due Friday at 5pm outside my door.

1 Convergence Tests
Recall

Definition 1.1. We may write the sequence of partial sums as
∑∞

k=1 ak, and we call it an infinite
series.

We saw that an infinite series will converge if it fulfills the Cauchy criterion:

Theorem 1.2. Cauchy Criterion
∑∞

k=1 ak converges iff for all ε > 0 there exists an N such that
for m,n ≥ N implies |

∑m
k=n ak| < ε.

Corollary 1.3. Term test
∑
an converges then limn 7→∞ an = 0.

Proof. Let m = n in the Cauchy criterion.

Remark 1.4. If the terms in the series do not converge to 0 then the series diverges. The converse
is false. If the terms converge to 0 the series may diverge.

Example 1.5. Example of term test not showing convergence:
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Theorem 1.6. Non-negative series. If an ≥ 0 then
∑
an converges if and only if partial sums are

bounded.

Proof. Idea This follows from the fact that bounded monotonic sequences converge.

Theorem 1.7. Comparison Test.

1. If |an| ≤ cn (eventually) for n large enough and
∑
cn converges then

∑
an converges.

2. If an ≥ dn ≥ 0 (eventually) for n large enough and
∑
dn diverges then

∑
an diverges.

Proof. Since the
∑
cn converges, by Cauchy criterion we have the following.

2 Geometric series
Theorem 2.1. If |x| < 1 then

∑∞
n=0 x

n = 1
1−x . Else the series diverges. We call this series the

geometric series.

Proof. Note the partial sum is

sn = 1 + x+ x2 + ...+ xn =
1− xn+1

1− x
.
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Example 2.2.
∞∑

n=0

1

n!

Aside: In fact
∑

1
n! converges very quickly to e.

Theorem 2.3. e is irrational.

Proof. By contradiction. Suppose e = m
n .
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Here’s a new series;
∞∑

n=1

1

np
.

Using our current tests, can we determine if this converges or diverges? Try:

Theorem 2.4. If a1 ≥ a2 ≥ ... ≥ 0 (monotonically decreasing, non negative) then
∑∞

n=1 an
converges iff

∑∞
k=0 2

ka2k converges.

Proof. If we can show the sequence of partial sums forms a bounded sequence we could use theorem
1.6 from above to finish the proof.

Consider

sn = a1 + a2 + a3 + ....an

tk = a1 + 2a2 + 22a4 + ...+ 2ka2k .
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Theorem 2.5.
∑

1
np converges if p > 1 and diverges if p ≤ 1.

Proof. Do this by cases:
If p ≤ 0 then

If p > 0 consider
∑

k 2
k 1
2kp

Example 2.6.
∞∑

n=1

1

n2
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Theorem 2.7. Root Test. Given
∑
an let α = lim sup n

√
|an| then

1. α < 1 then the series converges.

2. α > 1 then the series diverges.

3. α = 1 then the test is inconclusive.

Proof. Use comparison test with the geometric series.
If α < 1,

If α > 1

If α = 1 notice
∑

1 diverges but
∑

1
n2 converges. So it is inconclusive.

Theorem 2.8. Ratio Test

1.
∑
an converges if lim sup an+1

an
< 1.

2.
∑
an diverges if lim sup an+1

an
> 1 for some n ≥ N0. (eventually bigger).

Proof. Again use the comparison test with the geometric series.

Note the ratio test is easier, but the root test is more powerful. See Rudin 3.36 and 3.37.
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