

Lecture 18–Nov 6; Series test!

Learning Goals

- Be able to state prove tests such as Cauchy criterion, Comparison test, geometric series, and the term test.
- Recognize when a series test is inapplicable.
- Use some series tests to prove convergence or divergence.
- Prove e is irrational.

There is more on series than we will cover. Please see Rudin pg 72-75 for more about operations with series.

Exam is available on Sakai. Due Friday at 5pm outside my door.

1 Convergence Tests

Recall

Definition 1.1. We may write the sequence of partial sums as $\sum_{k=1}^{\infty} a_k$, and we call it an **infinite series**.

We saw that an infinite series will converge if it fulfills the Cauchy criterion:

Theorem 1.2. *Cauchy Criterion* $\sum_{k=1}^{\infty} a_k$ converges iff for all $\epsilon > 0$ there exists an N such that for $m, n \geq N$ implies $|\sum_{k=n}^m a_k| < \epsilon$.

Corollary 1.3. Term test $\sum a_n$ converges then $\lim_{n \rightarrow \infty} a_n = 0$.

Proof. Let $m = n$ in the Cauchy criterion.

□

Remark 1.4. If the terms in the series do not converge to 0 then the series diverges. The converse is **false**. If the terms converge to 0 the series may diverge.

Example 1.5. Example of term test not showing convergence:

Theorem 1.6. *Non-negative series. If $a_n \geq 0$ then $\sum a_n$ converges if and only if partial sums are bounded.*

Proof. Idea This follows from the fact that bounded monotonic sequences converge.

□

Theorem 1.7. *Comparison Test.*

1. *If $|a_n| \leq c_n$ (eventually) for n large enough and $\sum c_n$ converges then $\sum a_n$ converges.*
2. *If $a_n \geq d_n \geq 0$ (eventually) for n large enough and $\sum d_n$ diverges then $\sum a_n$ diverges.*

Proof. Since the $\sum c_n$ converges, by Cauchy criterion we have the following.

□

2 Geometric series

Theorem 2.1. *If $|x| < 1$ then $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. Else the series diverges. We call this series the geometric series.*

Proof. Note the partial sum is

$$s_n = 1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}.$$

□

Example 2.2.

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

Aside: In fact $\sum \frac{1}{n!}$ converges very quickly to e .

Theorem 2.3. *e is irrational.*

Proof. By contradiction. Suppose $e = \frac{m}{n}$.

□

Here's a new series;

$$\sum_{n=1}^{\infty} \frac{1}{n^p}.$$

Using our current tests, can we determine if this converges or diverges? Try:

Theorem 2.4. *If $a_1 \geq a_2 \geq \dots \geq 0$ (monotonically decreasing, non negative) then $\sum_{n=1}^{\infty} a_n$ converges iff $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.*

Proof. If we can show the sequence of partial sums forms a bounded sequence we could use theorem 1.6 from above to finish the proof.

Consider

$$\begin{aligned} s_n &= a_1 + a_2 + a_3 + \dots + a_n \\ t_k &= a_1 + 2a_2 + 2^2 a_4 + \dots + 2^k a_{2^k}. \end{aligned}$$

□

Theorem 2.5. $\sum \frac{1}{n^p}$ converges if $p > 1$ and diverges if $p \leq 1$.

Proof. Do this by cases:

If $p \leq 0$ then

If $p > 0$ consider $\sum_k 2^k \frac{1}{2^{kp}}$

□

Example 2.6.

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

Theorem 2.7. Root Test. Given $\sum a_n$ let $\alpha = \limsup \sqrt[n]{|a_n|}$ then

1. $\alpha < 1$ then the series converges.
2. $\alpha > 1$ then the series diverges.
3. $\alpha = 1$ then the test is inconclusive.

Proof. Use comparison test with the geometric series.

If $\alpha < 1$,

If $\alpha > 1$

If $\alpha = 1$ notice $\sum 1$ diverges but $\sum \frac{1}{n^2}$ converges. So it is inconclusive. \square

Theorem 2.8. Ratio Test

1. $\sum a_n$ converges if $\limsup \frac{a_{n+1}}{a_n} < 1$.
2. $\sum a_n$ diverges if $\limsup \frac{a_{n+1}}{a_n} > 1$ for some $n \geq N_0$. (eventually bigger).

Proof. Again use the comparison test with the geometric series.

Note the ratio test is easier, but the root test is more powerful. See Rudin 3.36 and 3.37. \square