
Lecture 24–Nov 27; Taylor’s Thereom and Uniform
Convergence

Learning Goals

• State and prove MVT and related Theorems.

• State and prove Taylor’s Theorem and understand its relationship with MVT.

• Define pointwise convergence of a sequence of functions. Be able to find pointwise convergence
for nice functions.

• Define uniform convergence of a sequence of functions and see how it’s needed to imply
continuity.

1 Differentiability continued
Recall:

Theorem 1.1. Mean Value Theorem. If f is continuous on [a, b] and f is differentiable on (a, b)
then there exists a c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

Question: Why do we need to assume differentiable?

Note there is more to differentiability that what we will cover in lecture. Please see Rudin
pages 108-113. Your homework will point you to theorems to think about that were not discussed
in class.

Theorem 1.2. Rolle’s Theorem, a special case of MVT. If h : [a, b] → R has a local max at
c ∈ (a, b) and h′(c) exists then h′(c) = 0.

Proof Idea. Look at the signs of the slopes of the secant lines on the left and right .
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Theorem 1.3. Generalized MVT (Cauchy). If f and g is continuous on [a, b] and differentiable
on (a, b) then there exists a c ∈ (a, b) such that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c)

Proof. Proof Idea. Let f(t) = the position of the knive C at time t on the x-axis. Let g(t) = the
position of the knife D at time t on the y-axis.

2 Taylor’s Theorem
Note in MVT:

f(b) = f(a) + f ′(c)(b− a)︸ ︷︷ ︸
error term

for some c ∈ (a, b). The error term is not precisely known because it is hard to find the c.

This suggests that f(b) = f(a) + f ′(a)(b− a)+error. In fact the error term is f ′′(c)(b− a)2/2!.
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Definition 2.1. In general, Pn(x) = f(a) + f ′(a)(x− a) + ...+ f(n)(a)
n! (x− a)n is the nth Taylor

Polynomial.

Remark 2.2. • This polynomial has the same value and n derivatives as f at a.

• This is the “best” polynomial approximation of degree n.

• This leads to the question: How good is this approximation?

Theorem 2.3. Taylor’s Theorem
If f (n−1) is continuous on [a, b] and f (n) exists on (a, b) then Pn−1 approximates f for x ∈ (a, b) :

f(x) = Pn−1(x) +
f (n)(c)

n!
(x− a)n︸ ︷︷ ︸

error

for some c ∈ (a, x).

Note:

Proof. Proof Sketch. If n = 1 then

Proof. Alternative Proof.

• Let P (a, x) =
∑n−1

k=0
f(k)(a)

k! (x− a)k.

• Define K by f(b) = f(a) + K
n! (b− a)

n.

• We want to show that K = f (n)(c) for some c ∈ (a, b).
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2.1 Ch 7; Sequences of Functions
We know what it means for a sequence of numbers to converge. But functions change depending
on their input. That leads us to the question:

Question: What does it mean to say fn(x) converges?

Definition 2.4. A natural way to define convergence of a sequence of functions is pointwise: Fix
an x. Does {fn(x)} converge as a sequence of points? If {fn(x)} converges to f(x) for all x then
the pointwise limit is f(x) = limn 7→∞ fn(x).

Example 2.5. • fn(x) = x/n on R.

• fn(x) = xn on [0, 1].

• What about weirder examples?
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Definition 2.6. For bounded : E → R define

||f || = sup
x∈E
|f(x)|.

We call this the sup norm.

Definition 2.7. We say fn 7→ f “fn converges uniformly to f ” if for all ε > 0 there exists N
such that for all n ≥ N implies ||fn − f || < ε.

The intuition here is that this is the “ribbon convergence distance.”

Example 2.8. Returning to our previous examples:

• Our first example does not converge uniformly. Why?

What could we do to the domain so that it would converge uniformly?
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• Second example:

Theorem 2.9. If fn is continuous and fn converges uniformly to f then f is continuous.

Proof. We want to use the bound:

|f(x)− f(y)| ≤ |f(x)− fn(x)|︸ ︷︷ ︸
(1)

+ |fn(x)− fn(y)|︸ ︷︷ ︸
(2)

+ |fn(y)− f(y)|︸ ︷︷ ︸
(3)

.
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