Lecture 24-Nov 27; Taylor’s Thereom and Uniform
Convergence

Learning Goals
e State and prove MVT and related Theorems.
e State and prove Taylor’s Theorem and understand its relationship with MVT.

e Define pointwise convergence of a sequence of functions. Be able to find pointwise convergence
for nice functions.

e Define uniform convergence of a sequence of functions and see how it’s needed to imply
continuity.

1 Differentiability continued

Recall:

Theorem 1.1. Mean Value Theorem. If f is continuous on [a,b] and [ is differentiable on (a,b)
then there exists a ¢ € (a,b) such that f(b) — f(a) = f'(c)(b — a).

Question: Why do we need to assume differentiable?

Note there is more to differentiability that what we will cover in lecture. Please see Rudin
pages 108-113. Your homework will point you to theorems to think about that were not discussed
in class.

Theorem 1.2. Rolle’s Theorem, a special case of MVT. If h : [a,b] — R has a local max at
c € (a,b) and I/ (c) exists then h'(c) = 0.

Proof Idea. Look at the signs of the slopes of the secant lines on the left and right .



Theorem 1.3. Generalized MVT (Cauchy). If f and g is continuous on [a,b] and differentiable
on (a,b) then there exists a ¢ € (a,b) such that

Proof. Proof Idea. Let f(t) = the position of the knive C at time ¢ on the z-axis. Let g(t) = the
position of the knife D at time ¢ on the y-axis.

2 Taylor’s Theorem

Note in MVT:
fb) = fa)+ f'(c)(b—a)
error term

for some ¢ € (a,b). The error term is not precisely known because it is hard to find the c.

This suggests that f(b) = f(a)+ f'(a)(b— a)+error. In fact the error term is f(c)(b— a)?/2!.



Definition 2.1. In general, P,(x) = f(a) + f'(a)(x —a) + ... + %(m —a)™ is the nth Taylor
Polynomial.

Remark 2.2. e This polynomial has the same value and n derivatives as f at a.
e This is the “best” polynomial approximation of degree n.

e This leads to the question: How good is this approximation?

Theorem 2.3. Taylor’s Theorem
If f=1 s continuous on [a,b] and f™) exists on (a,b) then P,y approximates f for x € (a,b) :
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for some ¢ € (a,x).

Note:

Proof. Proof Sketch. If n =1 then

O
Proof. Alternative Proof.
o Let Pla,z) = Y p, f(’:!(a) (z —a)*.
e Define K by f(b) = f(a) + & (b—a)™.
e We want to show that K = f(")(c) for some ¢ € (a,b).
O



2.1 Ch 7; Sequences of Functions

We know what it means for a sequence of numbers to converge. But functions change depending
on their input. That leads us to the question:
Question: What does it mean to say f,(x) converges?

Definition 2.4. A natural way to define convergence of a sequence of functions is pointwise: Fix

an z. Does {f,(x)} converge as a sequence of points? If {f,(x)} converges to f(z) for all z then
the pointwise limit is f(x) = limysoo fn ().

Ezample 2.5. o fu(x)=x/nonR.

o fu(xz)=2a"on [0,1].

e What about weirder examples?



Definition 2.6. For bounded : £ — R define
[f]] = sup | f(z)].
zeFE

We call this the sup norm.

Definition 2.7. We say f,, — f “f, converges uniformly to f” if for all € > 0 there exists N
such that for all n > N implies ||f, — f]| <.

The intuition here is that this is the “ribbon convergence distance.”

Ezample 2.8. Returning to our previous examples:

e Our first example does not converge uniformly. Why?

What could we do to the domain so that it would converge uniformly?



e Second example:

Theorem 2.9. If f, is continuous and f, converges uniformly to f then f is continuous.
Proof. We want to use the bound:

|f(x) = f)] < |f(@) = ful@)|+ | ful@) = fu@)|+ [ faly) = F(Y)]-
(1) (2) (3)
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