Lecture 2-September 4: Building the rational numbers

Learning Goals

e We create a solid foundation for real numbers. Students will learn how to extend operations
on integers to the rational numbers that are well defined.

e Be able to define a field and ordered field.
e Students will be able to prove that the rational numbers are dense.

e Students will be able to show that the rational number line has holes.

1 Number systems

We wish to build the real numbers on solid foundation. So we can’t always take advantage of
things we’ve always ‘known.” For example, I don’t actually know that (a®)¢ is a®. I can prove it
for integers using the fact that exponentials with integers means repetitive multiplication (this is
its definition). But what does it mean if b, ¢ are rationals or real numbers? So let’s carefully define
our number systems:

We need to start somewhere, otherwise we’ll never start the class. So let’s assume we have the
integers

7, =

Definition 1.1. .

e Let S be a set. An order on S is a relation < with the following properties:

1. If z € S and y € S then one and ONLY one of the following holds: = < y,y < z,x = y.

2. fz,y,ze Sifx <yand y < z then z < z.

We read = < y as We often say y > x in place of z < y. z < y
indicates © <y OR = = y.

e An ordered set is a set S in which an order is defined, and we write the ordered set as

(S, <).

Example 1.2. 7Z is an ordered set with order Show < is an order on Z.




We want to build the rational numbers formally. Recall from Calculus we defined Q to be
Q =

This is almost what we need, but let’s be clearer.

£ is an equivalence class defined by the equivalence relations ~ on Z x {Z\ 0}.

We define the equivalence to be (p,q) ~ (m,n) iff

Question: Is this an equivalence relation?
Reflexive:

Symmetric:



1.1 Arithmetic on Q

We want to extend the arithmetic of Z to Q so that its operations are “well-defined.” What do we
mean by well defined?

Let’s view Z C Q. How?

n—

Let’s try to extend addition. One defintion we may use is the following:

a c a-+c

b+d_b+d

Is this a good definition of addition? Try an example and see. Remember a single rational number
represents infinitely many rational numbers in its equivalence relation.

We can also try

Is this addition well defined?

This definition is BORING! Here different representation give the same output. But it’s a little
too same for us.



We have to find a way of adding to elements that is well defined.
The Goldie Locks definition (it’s just right):
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This extends addition on Z to addition on Q. Is this addition well defined? We need to check if
then

How would you define multiplication and what would you need to check to show well defined?
You will show these on your homework.

Cool fact! The order on Z can be extended to Q.
Ezample 1.3. Our above example says for Z, m <n if n—m € {1,2,3,...}.

In Q we will say ¢ < § if

Where 7 is positive if either both m, n are positive or both are negative.
Question: Is this well defined? Check:

< is an order:

< is well defined:



2 Fields and ordered fields

Now with Q equipped with this addition, multiplication and order we can see that Q is a field. (Z
is a ring).

Definition 2.1. A field is a set F' with two operations, called addition and multiplication, which
satisfy the field axioms: A set (F, 4+, X) with operations is a field if it satisfies the following axioms:

1. closed.

2. commutative.

3. associative.

4. multiplicative identity and an additive identity.

5. Multiplicative and additive inverses exist.

6. the operations play nice: distributive law holds.

Now check if Q is a field:



When Q is equipped with the order extended from Z it becomes an ordered field.
Definition 2.2. An ordered field is a field F' with order < which is preserved by operations:
ilfz,yze Fandy< zthenz+y<z+ 2.
ii Ifx,y,z€ F, y <z, and x # 0 then zy < xz.
ii” If x,y € F with > 0 and y > 0 then zy > 0.

So all this says Q is great (number theorists love it). For example:

Ezample 2.3. Q solves equations Z could not. Consider 3z + 5 = 0.

There is a lot to Q :
Theorem 2.4. Between any 2 distinct rational numbers there is a rational number.

Proof. Let

But! Q is still not good enough.
Theorem 2.5. 22 = 2 has no solutions in Q.

Proof. We will prove this using contradiction.

So there are holes in the number line, we can’t see them, but they are there.
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