

Lecture 2–September 4: Building the rational numbers

Learning Goals

- We create a solid foundation for real numbers. Students will learn how to extend operations on integers to the rational numbers that are well defined.
- Be able to define a field and ordered field.
- Students will be able to prove that the rational numbers are dense.
- Students will be able to show that the rational number line has holes.

1 Number systems

We wish to build the real numbers on solid foundation. So we can't always take advantage of things we've always 'known.' For example, I don't actually know that $(a^b)^c$ is a^{bc} . I can prove it for integers using the fact that exponentials with integers means repetitive multiplication (this is its definition). But what does it mean if b, c are rationals or real numbers? So let's carefully define our number systems:

We need to start somewhere, otherwise we'll never start the class. So let's assume we have the integers

$$\mathbb{Z} = \underline{\hspace{10em}}$$

Definition 1.1. .

- Let S be a set. An **order** on S is a relation $<$ with the following properties:
 1. If $x \in S$ and $y \in S$ then one and ONLY one of the following holds: $x < y, y < x, x = y$.

$$2. \text{ If } x, y, z \in S \text{ if } x < y \text{ and } y < z \text{ then } x < z. \underline{\hspace{10em}}$$

We read $x < y$ as $\underline{\hspace{10em}}$. We often say $y > x$ in place of $x < y$. $x \leq y$ indicates $x < y$ OR $x = y$.

- An **ordered set** is a set S in which an order is defined, and we write the ordered set as $(S, <)$.

Example 1.2. \mathbb{Z} is an ordered set with order $\underline{\hspace{10em}}$. Show $<$ is an order on \mathbb{Z} .

We want to build the rational numbers formally. Recall from Calculus we defined \mathbb{Q} to be

$$\mathbb{Q} = \underline{\hspace{10cm}}$$

This is almost what we need, but let's be clearer.

$\frac{p}{q}$ is an equivalence class defined by the equivalence relations \sim on $\mathbb{Z} \times \{\mathbb{Z} \setminus 0\}$.

We define the equivalence to be $(p, q) \sim (m, n)$ iff $\underline{\hspace{10cm}}$.

Question: Is this an equivalence relation?

Reflexive:

Symmetric:

1.1 Arithmetic on \mathbb{Q}

We want to extend the arithmetic of \mathbb{Z} to \mathbb{Q} so that its operations are “well-defined.” What do we mean by well defined?

Let’s view $\mathbb{Z} \subset \mathbb{Q}$. How?

$$n \mapsto \underline{\hspace{2cm}}.$$

Let’s try to extend addition. One defintion we may use is the following:

$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$$

Is this a good definition of addition? Try an example and see. Remember a single rational number represents infinitely many rational numbers in its equivalence relation.

We can also try

$$\frac{a}{b} + \frac{c}{d} = \frac{0}{1}$$

Is this addition well defined?

This definition is BORING! Here different representation give the same output. But it’s a little too same for us.

We have to find a way of adding to elements that is well defined.
The Goldie Locks definition (it's just right):

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

This extends addition on \mathbb{Z} to addition on \mathbb{Q} . Is this addition well defined? We need to check if
_____ then _____.

How would you define multiplication and what would you need to check to show well defined?
You will show these on your homework.

Cool fact! The order on \mathbb{Z} can be extended to \mathbb{Q} .

Example 1.3. Our above example says for \mathbb{Z} , $m < n$ if $n - m \in \{1, 2, 3, \dots\}$.

In \mathbb{Q} we will say $\frac{a}{b} < \frac{c}{d}$ if _____.

Where $\frac{m}{n}$ is positive if either both m, n are positive or both are negative.
Question: Is this well defined? Check:

$<$ is an order:

$<$ is well defined:

2 Fields and ordered fields

Now with \mathbb{Q} equipped with this addition, multiplication and order we can see that \mathbb{Q} is a **field**. (\mathbb{Z} is a **ring**).

Definition 2.1. A **field** is a set F with two operations, called addition and multiplication, which satisfy the field axioms: A set $(F, +, \times)$ with operations is a **field** if it satisfies the following axioms:

1. closed. _____
2. commutative. _____
3. associative. _____
4. multiplicative identity and an additive identity. _____
5. Multiplicative and additive inverses exist. _____
6. the operations play nice: distributive law holds. _____

Now check if \mathbb{Q} is a field:

When \mathbb{Q} is equipped with the order extended from \mathbb{Z} it becomes an *ordered field*.

Definition 2.2. An **ordered field** is a field F with order $<$ which is preserved by operations:

- i If $x, y, z \in F$ and $y < z$ then $x + y < x + z$.
- ii If $x, y, z \in F$, $y < z$, and $x \neq 0$ then $xy < xz$.
- ii' If $x, y \in F$ with $x > 0$ and $y > 0$ then $xy > 0$.

So all this says \mathbb{Q} is great (number theorists love it). For example:

Example 2.3. \mathbb{Q} solves equations \mathbb{Z} could not. Consider $3x + 5 = 0$.

There is a lot to \mathbb{Q} :

Theorem 2.4. Between any 2 distinct rational numbers there is a rational number.

Proof. Let _____.

□

But! \mathbb{Q} is still not good enough.

Theorem 2.5. $x^2 = 2$ has no solutions in \mathbb{Q} .

Proof. We will prove this using contradiction.

□

So there are holes in the number line, we can't see them, but they are there.