
Lecture 2–September 4: Building the rational numbers

Learning Goals

• We create a solid foundation for real numbers. Students will learn how to extend operations
on integers to the rational numbers that are well defined.

• Be able to define a field and ordered field.

• Students will be able to prove that the rational numbers are dense.

• Students will be able to show that the rational number line has holes.

1 Number systems
We wish to build the real numbers on solid foundation. So we can’t always take advantage of
things we’ve always ‘known.’ For example, I don’t actually know that (ab)c is abc. I can prove it
for integers using the fact that exponentials with integers means repetitive multiplication (this is
its definition). But what does it mean if b, c are rationals or real numbers? So let’s carefully define
our number systems:

We need to start somewhere, otherwise we’ll never start the class. So let’s assume we have the
integers

Z =

Definition 1.1. .

• Let S be a set. An order on S is a relation < with the following properties:

1. If x ∈ S and y ∈ S then one and ONLY one of the following holds: x < y, y < x, x = y.

2. If x, y, z ∈ S if x < y and y < z then x < z.

We read x < y as . We often say y > x in place of x < y. x ≤ y
indicates x < y OR x = y.

• An ordered set is a set S in which an order is defined, and we write the ordered set as
(S,<).

Example 1.2. Z is an ordered set with order . Show < is an order on Z.
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We want to build the rational numbers formally. Recall from Calculus we defined Q to be

Q =

This is almost what we need, but let’s be clearer.
p
q is an equivalence class defined by the equivalence relations ∼ on Z× {Z \ 0}.

We define the equivalence to be (p, q) ∼ (m,n) iff .

Question: Is this an equivalence relation?
Reflexive:

Symmetric:
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1.1 Arithmetic on Q
We want to extend the arithmetic of Z to Q so that its operations are “well-defined.” What do we
mean by well defined?

Let’s view Z ⊂ Q. How?

n 7→ .

Let’s try to extend addition. One defintion we may use is the following:

a

b
+

c

d
=

a+ c

b+ d

Is this a good definition of addition? Try an example and see. Remember a single rational number
represents infinitely many rational numbers in its equivalence relation.

We can also try

a

b
+

c

d
=

0

1

Is this addition well defined?

This definition is BORING! Here different representation give the same output. But it’s a little
too same for us.
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We have to find a way of adding to elements that is well defined.
The Goldie Locks definition (it’s just right):

a

b
+

c

d
=

ad+ bc

bd

This extends addition on Z to addition on Q. Is this addition well defined? We need to check if

then .

How would you define multiplication and what would you need to check to show well defined?
You will show these on your homework.

Cool fact! The order on Z can be extended to Q.

Example 1.3. Our above example says for Z, m < n if n−m ∈ {1, 2, 3, ...}.

In Q we will say a
b < c

d if ..

Where m
n is positive if either both m,n are positive or both are negative.

Question: Is this well defined? Check:

< is an order:

< is well defined:
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2 Fields and ordered fields
Now with Q equipped with this addition, multiplication and order we can see that Q is a field. (Z
is a ring).

Definition 2.1. A field is a set F with two operations, called addition and multiplication, which
satisfy the field axioms: A set (F,+,×) with operations is a field if it satisfies the following axioms:

1. closed.

2. commutative.

3. associative.

4. multiplicative identity and an additive identity.

5. Multiplicative and additive inverses exist.

6. the operations play nice: distributive law holds.

Now check if Q is a field:
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When Q is equipped with the order extended from Z it becomes an ordered field.

Definition 2.2. An ordered field is a field F with order < which is preserved by operations:

i If x, y, z ∈ F and y < z then x+ y < x+ z.

ii If x, y, z ∈ F, y < z, and x 6= 0 then xy < xz.

ii’ If x, y ∈ F with x > 0 and y > 0 then xy > 0.

So all this says Q is great (number theorists love it). For example:

Example 2.3. Q solves equations Z could not. Consider 3x+ 5 = 0.

There is a lot to Q :

Theorem 2.4. Between any 2 distinct rational numbers there is a rational number.

Proof. Let .

But! Q is still not good enough.

Theorem 2.5. x2 = 2 has no solutions in Q.

Proof. We will prove this using contradiction.

So there are holes in the number line, we can’t see them, but they are there.
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