
Lecture 5–Sept 13: Other number systems

Learning Goals

• Define other number systems that are interesting to look at and may appear again in 131:
R,Rk,C,Ck.

• Define distance on Rk and Ck.

• State and prove Cauchy-Schwarz inequality for Ck.

FRIDAY September 15: HW 2 DUE at 12pm

Last time: We discussed the least upper bound property supE = lubE.
Properties of least upper bounds:

1.

2.

3.

4.

5.

• γ is an upper bound of E.

• γ is least: any x < γ is not an upper bound. Find e ∈ E such that s+ x < e. OR

• γ is least: any upper bound β for E satsifies γ ≤ β.

6.

7.

8.

9.
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Definition 0.1. The extended reals are defined to be R∪{±∞}. We denote the extended reals
as R.

Define

x+∞ =∞

So

Remark 0.2. In R every subset has a supremum, possibly ∞. eg supE =∞. This means E is not
bounded.

Let ~x = (x1, x2, ..., xk).

Definition 0.3. Euclidean k space is defined to be

Rk = {~x : xi ∈ R}.

We can define addition:

We can define scalar multiplication:

Rk has an inner product (generalization of the dot product) defined to be:

< ~x, ~y >= ~x · ~y =

This multiplication outputs a scalar.

Remark 0.4. We can use the inner product to determine which vectors are perpendicular.
We can also use it to define a norm or length on Euclidean space:

|~x| = (~x · ~x)1/2 =

k∑
i=1

x2i
1/2
.

Aside:

• Addition and scalar multiplication satisfy

• The zero element is ~0 = (0, ..., 0).

• We saw above that Rk has an inner product and a norm. This is not a field as ‘obvious’
multiplication gives zero divisors which are not allowed since all fields are integral domains.
(Abstract Algebra).
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Theorem 0.5. Suppose ~x, ~y, ~z ∈ Rk and α ∈ R. Then

1. |~x| ≥ 0.

2. |~x| = 0 iff ~x = ~0.

3. |α~x| = |α||~x|.

4. |~x · ~y| ≤ |~x||~y|

5. |~x+ ~y| ≤ |~x|+ |~y|. Triangle inequality.

6. |~x− ~z| ≤ |~x− ~y|+ |~y − ~z|

Practice: Try to prove some of these facts!

Geometrically we visualize R as a line and R2 as a plane, R3 (and above) as a hyper plane.
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1 The complex numbers and their properties
Let’s consider R2.

R2 can have an addition and multiplication defined on it such that R2 is a field, even though
in general Rk is not.

Addition:
(a, b) + (c, d) = (a+ c, b+ d)

Multiplication:

What have we defined?

Theorem 1.1. C is a field.

Proof. Check: (0, 0) is the additive identity and (1, 0) is the multiplicative identity.

The subset {(a, 0) : a ∈ R} behaves like R. So R ⊂ C with R→ C via:
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Via multiplication we can see:

Cool Fact:
C is algebraically closed. This means every non constant polynomial in C has roots in C.

(Fundamental Theorem of Algebra)

Definition 1.2. If z = a+ bi ∈ C then the conjugate is z̄ = a− bi. We say

Re(z) = a

and
Im(z) = b.

Please check for z, w ∈ C the following hold:

• z + z̄ = 2Re(z)

• z + w = z̄ + w̄

• zw = z̄w̄

• zz̄ = a2 + b2 ≥ 0.
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Definition 1.3. We define |z| = (zz̄)1/2 to be the absolute value of z. Thus we have a distance
measure on C.

Please check for all z, w ∈ C

• |z| ≥ 0

• |z̄| = |z|

• |zw| = |z||w|.

• Re(z) ≤ |z|.

• No order can be defined on C such that C is an ordered field. (Homework problem)

• |z + w| ≤ |z|+ |w|.

Proof. We consider
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You can also create a complex vector space

Ck := {(z1, ..., zk) : zi ∈ C}.

Ck has an inner product: For ~a,~b ∈ Ck define

< ~a,~b >=

This inner product ensures that < ~a,~a > is real and ≥ 0. We can define

|~a| =< ~a,~a >1/2 .

Theorem 1.4. The Cauchy-Schwarz Inequality
For ~a,~b ∈ Ck

| < ~a,~b > |2 ≤< ~a,~a ><~b,~b >

or equivalently

|
k∑

i=1

aib̄i|2 ≤
k∑

i=1

|ai|2
k∑

i=1

|bi|2

This is the basis for the Heisenberg uncertainty principle, ask your nearest physicist!

Proof. We will prove this inequality for Rk first; Innovative piece:
Consider P (x) =

∑k
i=1(ai − xbi)2 ≥ 0.

The above proof motivates how we’ll prove C-S for Ck;

For an alternative proof see Rudin page 15.
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Example 1.5. Here are some fun consequences of Cauchy Schwarz! I found some from a math
olympiad hand book.

• You can use C-S to show that (x1 + x2 + ...+ xn)2 ≤ n(x21 + x22 + ...+ x2n).

• Can also use it to show for all positive numbers a, b, c, d ∈ R that 16 ≤ (a+ b+ c+ d)(1/a+
1/b+ 1/c+ 1/d).

• Consider the function f(x) = (x+k)2

x2+1 , x ∈ (−∞,∞), where k is a positive integer. Show that
f(x) ≤ k2 + 1.

• Let a1, a2, · · · , an, b1, b2, · · · , bn be positive real numbers such that a1 + a2 + · · · + an =
b1 + b2 + · · ·+ bn. Show that

a21
a1 + b1

+
a22

a2 + b2
+ · · ·+ a2n

an + bn
≥ a1 + a2 + · · ·+ an

2

.
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