

Lecture 5–Sept 13: Other number systems

Learning Goals

- Define other number systems that are interesting to look at and may appear again in 131: $\overline{\mathbb{R}}, \mathbb{R}^k, \mathbb{C}, \mathbb{C}^k$.
- Define distance on \mathbb{R}^k and \mathbb{C}^k .
- State and prove Cauchy-Schwarz inequality for \mathbb{C}^k .

FRIDAY September 15: HW 2 DUE at **12pm**

Last time: We discussed the least upper bound property $\sup E = \text{lub } E$.
Properties of least upper bounds:

1. _____

2. _____

3. _____

4. _____

5. _____

- γ is an upper bound of E .
- γ is least: any $x < \gamma$ is not an upper bound. Find $e \in E$ such that $s + x < e$. OR
- γ is least: any upper bound β for E satisfies $\gamma \leq \beta$.

6. _____

7. _____

8. _____

9. _____

Definition 0.1. The **extended reals** are defined to be $\mathbb{R} \cup \{\pm\infty\}$. We denote the extended reals as $\overline{\mathbb{R}}$.

Define

$$x + \infty = \infty$$

So

Remark 0.2. In $\overline{\mathbb{R}}$ every subset has a supremum, possibly ∞ . eg $\sup E = \infty$. This means E is not bounded.

Let $\vec{x} = (x_1, x_2, \dots, x_k)$.

Definition 0.3. Euclidean k space is defined to be

$$\mathbb{R}^k = \{\vec{x} : x_i \in \mathbb{R}\}.$$

We can define addition:

We can define scalar multiplication:

\mathbb{R}^k has an inner product (generalization of the dot product) defined to be:

$$\langle \vec{x}, \vec{y} \rangle = \vec{x} \cdot \vec{y} =$$

This multiplication outputs a scalar.

Remark 0.4. We can use the inner product to determine which vectors are perpendicular.

We can also use it to define a norm or length on Euclidean space:

$$|\vec{x}| = (\vec{x} \cdot \vec{x})^{1/2} = \sum_{i=1}^k x_i^{2^{1/2}}.$$

Aside:

- Addition and scalar multiplication satisfy

- The zero element is $\vec{0} = (0, \dots, 0)$.

- We saw above that \mathbb{R}^k has an inner product and a norm. This is not a field as ‘obvious’ multiplication gives zero divisors which are not allowed since all fields are integral domains. (Abstract Algebra).

Theorem 0.5. Suppose $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^k$ and $\alpha \in \mathbb{R}$. Then

1. $|\vec{x}| \geq 0$.
2. $|\vec{x}| = 0$ iff $\vec{x} = \vec{0}$.
3. $|\alpha \vec{x}| = |\alpha| |\vec{x}|$.
4. $|\vec{x} \cdot \vec{y}| \leq |\vec{x}| |\vec{y}|$
5. $|\vec{x} + \vec{y}| \leq |\vec{x}| + |\vec{y}|$. *Triangle inequality.*
6. $|\vec{x} - \vec{z}| \leq |\vec{x} - \vec{y}| + |\vec{y} - \vec{z}|$

Practice: Try to prove some of these facts!

Geometrically we visualize \mathbb{R} as a line and \mathbb{R}^2 as a plane, \mathbb{R}^3 (and above) as a hyper plane.

1 The complex numbers and their properties

Let's consider \mathbb{R}^2 .

\mathbb{R}^2 can have an addition and multiplication defined on it such that \mathbb{R}^2 is a field, even though in general \mathbb{R}^k is not.

Addition:

$$(a, b) + (c, d) = (a + c, b + d)$$

Multiplication:

What have we defined?

Theorem 1.1. \mathbb{C} is a field.

Proof. Check: $(0, 0)$ is the additive identity and $(1, 0)$ is the multiplicative identity.

□

The subset $\{(a, 0) : a \in \mathbb{R}\}$ behaves like \mathbb{R} . So $\mathbb{R} \subset \mathbb{C}$ with $\mathbb{R} \rightarrow \mathbb{C}$ via:

Via multiplication we can see:

Cool Fact:

\mathbb{C} is **algebraically closed**. This means every non constant polynomial in \mathbb{C} has roots in \mathbb{C} . (Fundamental Theorem of Algebra)

Definition 1.2. If $z = a + bi \in \mathbb{C}$ then the **conjugate** is $\bar{z} = a - bi$. We say

$$Re(z) = a$$

and

$$Im(z) = b.$$

Please check for $z, w \in \mathbb{C}$ the following hold:

- $z + \bar{z} = 2Re(z)$

- $\overline{z + w} = \bar{z} + \bar{w}$

- $\overline{zw} = \bar{z}\bar{w}$

- $z\bar{z} = a^2 + b^2 \geq 0$.

Definition 1.3. We define $|z| = (z\bar{z})^{1/2}$ to be the **absolute value** of z . Thus we have a distance measure on \mathbb{C} .

Please check for all $z, w \in \mathbb{C}$

- $|z| \geq 0$

- $|\bar{z}| = |z|$

- $|zw| = |z||w|$.

- $Re(z) \leq |z|$.

- No order can be defined on \mathbb{C} such that \mathbb{C} is an ordered field. (Homework problem)

- $|z + w| \leq |z| + |w|$.

Proof. We consider

□

You can also create a **complex** vector space

$$\mathbb{C}^k := \{(z_1, \dots, z_k) : z_i \in \mathbb{C}\}.$$

\mathbb{C}^k has an inner product: For $\vec{a}, \vec{b} \in \mathbb{C}^k$ define

$$\langle \vec{a}, \vec{b} \rangle = \underline{\hspace{10em}}$$

This inner product ensures that $\langle \vec{a}, \vec{a} \rangle$ is real and ≥ 0 . We can define

$$|\vec{a}| = \langle \vec{a}, \vec{a} \rangle^{1/2}.$$

Theorem 1.4. *The Cauchy-Schwarz Inequality*

For $\vec{a}, \vec{b} \in \mathbb{C}^k$

$$|\langle \vec{a}, \vec{b} \rangle|^2 \leq \langle \vec{a}, \vec{a} \rangle \langle \vec{b}, \vec{b} \rangle$$

or equivalently

$$\left| \sum_{i=1}^k a_i \bar{b}_i \right|^2 \leq \sum_{i=1}^k |a_i|^2 \sum_{i=1}^k |b_i|^2$$

This is the basis for the Heisenberg uncertainty principle, ask your nearest physicist!

Proof. We will prove this inequality for \mathbb{R}^k first; Innovative piece:

Consider $P(x) = \sum_{i=1}^k (a_i - xb_i)^2 \geq 0$.

The above proof motivates how we'll prove C-S for \mathbb{C}^k ;

For an alternative proof see Rudin page 15. □

Example 1.5. Here are some fun consequences of Cauchy Schwarz! I found some from a math olympiad hand book.

- You can use C-S to show that $(x_1 + x_2 + \dots + x_n)^2 \leq n(x_1^2 + x_2^2 + \dots + x_n^2)$.
- Can also use it to show for all positive numbers $a, b, c, d \in \mathbb{R}$ that $16 \leq (a + b + c + d)(1/a + 1/b + 1/c + 1/d)$.
- Consider the function $f(x) = \frac{(x+k)^2}{x^2+1}$, $x \in (-\infty, \infty)$, where k is a positive integer. Show that $f(x) \leq k^2 + 1$.
- Let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ be positive real numbers such that $a_1 + a_2 + \dots + a_n = b_1 + b_2 + \dots + b_n$. Show that

$$\frac{a_1^2}{a_1 + b_1} + \frac{a_2^2}{a_2 + b_2} + \dots + \frac{a_n^2}{a_n + b_n} \geq \frac{a_1 + a_2 + \dots + a_n}{2}$$