Lecture 6-Sept 18: Induction and critiquing proofs

Learning Goals

e Define the well ordering principle (WOP) and the principle of induction (POI).
e Be able to use WOP to prove POI and vice versa.

e Be able to use induction and strong induction to prove theorems.

e Be able to read someone else’s work or proof and be able to critique it to help the writer
improve.

e Recognize pitfalls in induction proofs.

1 Induction

Definition 1.1. The well ordering property (WOP) of N.
Any nonempty subset of N has a least element. We say N is well ordered.

Definition 1.2. Principle of Induction (POI)
Let S be a subset of N such that

1.1€S
2. If ke Sthenk+1€6S.

Then S = N.
We say S is an inductive set.

Theorem 1.3. The Well ordering principle implies the principle of induction.

Proof. Prove this by contradiction.

You will show in homework POl — WOP.



Recall how to do a proof by induction:
Let P(n) be a statement indexed by n € N. We will show P(n) is true for all n.

1. Show P(1) is true.
2. Show if P(k) is true then P(k+ 1) is true.

Then POI shows that P(n) is true for all n.
For strong induction we would instead show if P(1),..., P(k) is true then P(k + 1) is true.

A proof by induction should

[ ]
Ezample 1.4. Prove that for all n > 14 than n is a sum of 3s and 8s.

Proof. We will show by induction on n that for alln > 14 n=>"3+3_8.
Our base case is

O

The above theorem is related to a question in number theory: Question: Given p,q what is the
largest number you can not make as a sum of p’s and ¢’s? (Frobenius problem)



2 Proof and work critiquing activity

We will discuss your answers as a class after the jigsaw. Ask a member of your group to share out
a thought from each problem and we will collect our ideas together here:
Conclusions from the activity:



3 Groupl

In your group discuss the following theorems and their proofs for 5-7 minutes. Discuss: What
errors might they be making? What would you need to clarify in these proofs or student work? If
the theorem is true, how can you fix your classmates work?

Theorem 3.1. All natural numbers are even.

Proof. Suppose all numbers less than or equal to n are even. Notice that
n+1=(n—1)+ 2 =even +even=even. Hence n + 1 is even. O

Theorem 3.2. All natural numbers are odd.

Proof. For n =1, 1 is an odd number, so the base case is proved. Suppose all numbers less than
or equal to n are odd. Notice that

n+1=(n—1)+2 =odd +even=0dd since by the inductive hypothesis n — 1 is odd. Hence
n+ 1 is odd. O

Theorem 3.3. The sum of an odd integer and an even integer is odd.

Proof. Let a be an odd integer and b an even integer. Then a equals 14 an even integer, so a + b
equals an even integer plus an even integer plus 1. Thus a + b is not even, so it must be odd. U



4 Group 2

In your group discuss the following theorems and their proofs for 5-7 minutes. Discuss: What
errors might they be making? What would you need to clarify in these proofs or student work? If
the theorem is true, how can you fix your classmates work?

Theorem 4.1. All cats are the same color.

Proof. The statement all cats are the same color will be S(n). Consider the set of 1 cat. That cat
is the same color as itself, hence the base case S(1) is proven.

We will assume that S(n) is true. Then S(n + 1) = S(n) 4+ 1 where our inductive hypothesis
says our set of n cats are the same color and our base case says that our set of 1 cat is the same
color, so our set of n 4+ 1 cats are the same color. So by POI all cats are the same color. O

The following is related to a homework problem; I skipped proving the base case, as I want
you to do this for homework. For the following proof, find the logical error the person is making.
Please don’t prove the theorem.

Theorem 4.2. A nonempty finite set A in R contains its supremum.

Proof. We will prove this by induction on the size of A.

For the base case, if A = {a} show sup A = a. [justify this]

Assume our claim holds for any & element set.

Then if A is a k-element set then B = AU {a} is a (k + 1)-element set. Since the inductive
hypothesis holds for A, it has a supremum, b € A. Either a < b, then b is the supremum of B or
b < a, in which case a is the supremum of B. Thus by POI, we are done. O



5 Group 3

In your group discuss the following theorems and their proofs for 5-7 minutes. Discuss: What
errors might they be making? What would you need to clarify in these proofs or student work? If
the theorem is true, how can you fix this person’s work?

Theorem 5.1. FEvery tiling of a 2n x 2n checkerboard using dominoes must have either two 2 X 1
or two 1 X 2 dominoes in one corner.

Proof. For the base case we show all tilings of a 2 x 2 checkerboard by using two 2 x 1 dominoes
and 1 x 2 dominoes. See figure A. So the base case is true.

We assume every tiling of a 2n x 2n checkerboard using dominoes must have either two 2 x 1
or two 1 x 2 dominoes in one corner.

Now consider a 2(n 4 1) x 2(n 4+ 1) checkerboard. We can create this checkerboard by starting
with a 2n x 2n checkerboard and add in the rows and columns as in figure B. By the inductive
hypothesis we have two 2 x 1 or two 1 X 2 dominoes in one corner of our 2n x 2n checkerboard, so
our new 2(n + 1) x 2(n + 1) checkerboard also has this property. By POI we are done. O



6 Group 4

In your group discuss the following problems for 5-7 minutes. Below are examples of a student’s
response to some problems in analysis relating to sets. Discuss: Help the student to understand
the topic. What would you need to clarify for the student? How would you do that?

1. Let A = {1,{2,3}}. Decide whether each of the following statements is true or false: 1 € A,
1CA {1} e A {1} C A, {2,3} € 4, {2,3} C A

Student response: T,F.F. T F T.
2. Let X = {n?+3n —50:n € N}. Find three distinct elements of X.

Student response: Using n = 1,2, and 10, your classmate computes n? + 3n — 50, getting
—46,—40, and 80. They then conclude that 80 € X discarding —46 and —40 as possible
answers.



7 Group 5

In your group discuss the following theorems and their proofs for 5-7 minutes. Discuss: What is
Theorem 7.17 How could this proof be improved?

Proof. Assume that z is even. Then x = 2a for some integer a. Thus
322 —4x — 5= 3(2a)? — 4(2a) — 5 = 124> — 8a — 5 = 2(6a* — 4a — 3) + 1.
Since 6a® — 4a — 3 € Z, it follows that 322 — 4z — 5 is odd. O

1. What is Theorem 7.17

a) If z is odd, then 322 — 4z — 5 is even.

b) If 3z2 — 4z — 5 is even, then z is odd.

(
(b)
(c) z is odd only if 322 — 4z — 5 is even.
(d) Something else.

2. How could this proof be improved?



8 Example of needing Strong induction

Theorem 8.1. The fundamental Theorem of arithmetic
Any integer n > 2 is either a prime or can be represented as a product of not necessarily distinct
primes:
n = pips...pr, P; prime.

Proof. We will prove this using strong induction that for alln € Z>2 n = p;...p,. Call this statement
P(n).

Remark 8.2. strong induction and induction are equivalent. Sometimes it’s cleaner to use ‘weak’
induction and sometimes, as the above shows, stating strong induction is necessary to prove our
statement. Sometimes all we need is weak induction, but we need to prove multiple base cases, ie
Fibonacci style problems.
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