
Lecture 7–Sept 20: Countability and Uncountability

Learning Goals

• Learn how to count. Be able to formalize counting using N and functions.

• Be able to use induciton to prove N is infinite.

• Define what it means for a set to be countable or uncountable.

• Be able to prove Z, Q, etc are countable.

• Be able to prove if R is countable or uncountable.

• Be able to use arrays to prove countability and Cantor diagonlization arguments to show
uncountability.

• Define cardinality and power sets.

FRIDAY September 22: HW 3 DUE at 12pm

Let’s dive into chapter 2 of Rudin.

1 Counting and countability
Question: How do we count?

Answer:

Recall: f : A→ B (Domain into Codomain) associates

Some definitions:

• We write f(C) = {f(x) : x ∈ C},

• f−1(D) = {x : f(x) ∈ D}

• When f(A) = the entirety of B we say f is onto. or surjective: �

• When f(x) = f(y) implies x = y, we say f is one to one or injective. ↪→

• When f is one to one and onto .
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A bijection puts A and B into a ‘one to one correspondence.’ We write A ∼ B. Please check
that this is an equivalence relation.

Example 1.1. An example of a bijection.

Definition 1.2. We say A is finite if A ∼ {1, 2, ..., n} for some n ∈ N. We say A has cardinality n
and denote it [n]. Or A is empty, ∅.

Else we say A is infinite.

Definition 1.3. We say an infinite set A is countable if A ∼ N. (Here think A = {a1, a2, ...} has
a bijection into N). Else an infinite set A is uncountable.

Example 1.4. • N

•

Definition 1.5. A sequence is a function f defined on the set N. If f(n) = xn, for n ∈ N
it is customary to denote sequence f by {xn} = x1, x2, .... The values of f are terms of the
sequence.

So a sequence x1, ...xn, .... of distinct terms

• {2, 3, 4...}

• N \ {k}
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Theorem 1.6. N is infinite.

Proof. We’ll show there does not exist a bijection [n]→ N by induction on n.

Example 1.7. • 2N (the even numbers)

• Z is countable

• Hilberts Hotel: Hilbert’s hotel has infinitely many rooms and it has a no vacancy sign up.
How can the manager rearrange their customers so that they have vacancies?
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Theorem 1.8. Every infinite subset of countable sets is countable.

Proof. sketch Let E ⊂ A, where A is a countable set.

Remark 1.9. This means that no uncountable set can be a subset of a countable set. Countable
sets are the ‘smallest’ infinite set.

Theorem 1.10. Q is countable.

Proof. We need to list Q as a sequence, then that sequence can be in one to one correspondence
with N. Let’s first do Q+ then we will use the trick we used for Z ∼ N to get all of Q.

Why is repetition a non issue?
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Theorem 1.11. An (at most) countable union of (at most) countable sets is (at most) countable.

Proof. The array above will help us create a countable set. If we have countable sets A1, A2, ...
then we can create an array of their elements.

Question: Is R countable?
If R is not countable then there should be some real number that can’t have a decimal expansion

produced by a computer program.
Guesses?

Theorem 1.12 (Due to Cantor 1874.). R is .

Proof. It is enough to consider the subest [0, 1) ⊂ R.

Things to be careful: Do not always pick 9 as your alternative number since 1 = .99999...
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Definition 1.13. Give a set A we let 2A denote the power set of A. The power set is the set of
all subsets of A, include A and ∅.

Example 1.14. An example of a power set:

Definition 1.15. We say A and B have the same cardinality if and only if A ∼ B.

Theorem 1.16 (Due to Cantor 1891.). For any set A we have that A 6∼ 2A.

This theorem says A and 2A have different cardinalities. In fact when we consider N, we see
that the power set 2N ∼ R.

The continuum hypothesis (independent axiom of set theory) states that the first cardinality
bigger than N is R.
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