Lecture 7-Sept 20: Countability and Uncountability

Learning Goals

e Learn how to count. Be able to formalize counting using N and functions.
e Be able to use induciton to prove N is infinite.

e Define what it means for a set to be countable or uncountable.

e Be able to prove Z, Q, etc are countable.

e Be able to prove if R is countable or uncountable.

e Be able to use arrays to prove countability and Cantor diagonlization arguments to show
uncountability.

e Define cardinality and power sets.

FRIDAY September 22: HW 3 DUE at 12pm

Let’s dive into chapter 2 of Rudin.

1 Counting and countability

Question: How do we count?

Answer:

Recall: f: A — B (Domain into Codomain) associates

Some definitions:

e We write f(C) ={f(z):2z € C},

fHD)={z: f(z) € D}
When f(A) = the entirety of B we say f is onto. or surjective: —»

When f(z) = f(y) implies © = y, we say f is one to one or injective. <

When f is one to one and onto




A bijection puts A and B into a ‘one to one correspondence.” We write A ~ B. Please check
that this is an equivalence relation.

Ezample 1.1. An example of a bijection.

Definition 1.2. We say A is finite if A ~ {1,2,...,n} for some n € N. We say A has cardinality n
and denote it [n]. Or A is empty, 0.
Else we say A is infinite.

Definition 1.3. We say an infinite set A is countable if A ~ N. (Here think A = {a1,az,...} has
a bijection into N). Else an infinite set A is uncountable.

Ezxample 1.4. o N

Definition 1.5. A sequence is a function f defined on the set N. If f(n) = x,, for n € N

it is customary to denote sequence f by {x,} = 1,2, .... The values of f are terms of the
sequence.
So a sequence z1,...xy,, .... of distinct terms

e {2,3,4...}

e N\ {k}



Theorem 1.6. N is infinite.

Proof. We'll show there does not exist a bijection [n] — N by induction on n.

Ezample 1.7. e 2N (the even numbers)

e 7 is countable

e Hilberts Hotel: Hilbert’s hotel has infinitely many rooms and it has a no vacancy sign up.
How can the manager rearrange their customers so that they have vacancies?



Theorem 1.8. Every infinite subset of countable sets is countable.

Proof. sketch Let E C A, where A is a countable set.

O

Remark 1.9. This means that no uncountable set can be a subset of a countable set. Countable
sets are the ‘smallest’ infinite set.

Theorem 1.10. Q is countable.

Proof. We need to list Q as a sequence, then that sequence can be in one to one correspondence
with N. Let’s first do QT then we will use the trick we used for Z ~ N to get all of Q.

Why is repetition a non issue?



Theorem 1.11. An (at most) countable union of (at most) countable sets is (at most) countable.

Proof. The array above will help us create a countable set. If we have countable sets Aq, Ao, ...
then we can create an array of their elements.

O

Question: Is R countable?

If R is not countable then there should be some real number that can’t have a decimal expansion
produced by a computer program.

Guesses?

Theorem 1.12 (Due to Cantor 1874.). R is

Proof. Tt is enough to consider the subest [0,1) C R.

Things to be careful: Do not always pick 9 as your alternative number since 1 = .99999... O



Definition 1.13. Give a set A we let 24 denote the power set of A. The power set is the set of
all subsets of A, include A and 0.

Example 1.14. An example of a power set:

Definition 1.15. We say A and B have the same cardinality if and only if A ~ B.
Theorem 1.16 (Due to Cantor 1891.). For any set A we have that A £ 24.

This theorem says A and 24 have different cardinalities. In fact when we consider N, we see
that the power set 2 ~ R.

The continuum hypothesis (independent axiom of set theory) states that the first cardinality
bigger than N is R.
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